

Water Resources Modelling: Part2 - Reservoir operation
Dynamic Programming applications to reservoir operation

Rodrigo Proença de Oliveira
Instituto Superior Técnico - Universidade de Lisboa
$7^{\text {th }}-11^{\text {th }}$ February 2022
This project has been funded with support from the European Commission. This publication reflects the
views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

JT
 TÉCNICO
 LISBOA

Dynamic programming

Formulation of na optimization problem:
Each alternative solution is represented by the values the set of decision variables assume

Decision variables: $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$
Objective function: $\operatorname{Max} B\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ subject to:
$\mathrm{F}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots ., \mathrm{X}_{\mathrm{n}}\right)<=\mathrm{b}_{1}$
$F_{2}\left(X_{1}, X 2, \ldots ., X_{n}\right)<=b_{2}$
\qquad
$F_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)<=b_{n}$

Dynamic Programming:

The objective function is a separable function, i.e. it can be defined as the sum of functions of a single variable
$\operatorname{Max} B\left(X_{1}, X_{2}, \ldots ., X_{n}\right)=B_{1}\left(X_{1}\right)+B_{2}\left(X_{2}\right)+\ldots+B_{n}\left(X_{n}\right)$ subject to

$$
F_{11}\left(X_{1}\right)<=b_{11} ; F_{12}\left(X_{2}\right)<=b_{12} ; \ldots ; F_{1 n}\left(X_{n}\right)<=b_{1 n}
$$

$$
\mathrm{F}_{21}\left(\mathrm{X}_{1}\right)<=\mathrm{b}_{21} ; \mathrm{F}_{12}\left(X_{2}\right)<=\mathrm{b}_{22} ; \ldots ; \mathrm{F}_{2 \mathrm{n}}\left(X_{n}\right)<=\mathrm{b}_{2 \mathrm{n}}
$$

$F_{n 1}\left(X_{1}\right)<=b_{n 1} ; F_{n 2}\left(X_{2}\right)<=b_{n 2} ; \ldots ; F_{1 n}\left(X_{n}\right)<=b_{n n}$

Dynamic programming

The objective function is a separable function, i.e. can be defined as a sum of functions of a single variables:
$\operatorname{Max} B\left(X_{1}, X_{2}, \ldots ., X_{n}\right)=B_{1}\left(X_{1}\right)+B_{2}\left(X_{2}\right)+\ldots .+B_{n}\left(X_{n}\right)$

Subject to
$F_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right)<=b_{1}$
$F_{2}\left(X_{1}, X_{2}, \ldots, X_{n}\right)<=b_{2}$
.......
$F_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)<=b_{n}$

Main concepts:

- Stages: i
- Decision variables : X_{i}
- State variables: S_{i}
- Transfer function: $\mathrm{S}_{\mathrm{i}+1}=\mathrm{T}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right)$
- Cost or benefit function: B_{i}
- Optimum value function

TÉCNICO
 LISBOA

Dynamic programming

Main concepts:

- Stages: i
- Decision variables: X_{i}
- State variables: S_{i}
- Transfer function: $\mathrm{S}_{\mathrm{i}+1}=\mathrm{T}_{\mathrm{i}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right)$
- Cost or benefit function: $\mathrm{B}_{\mathrm{i}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{i}+1}, \mathrm{X}_{\mathrm{i}}\right)$
- Optimum value function: $F_{i}\left(S_{i}\right)=\max _{X_{i}}\left[B_{i}\left(S_{i}, X_{i}, S_{i+1}\right)+F_{i+1}\left(S_{i+1}\right)\right]$

Optimality principle- Belman (1957)

Belman's Principle:

- For each state and stage, there is an optimum future optimal path which is independent of how that state was reached;
- This principle allows the partition of a complex optimization problem into a set of simpler problems.

Optimal value function:

- Backward regression:

$$
F_{i}\left(S_{i}\right)=\max _{X_{i}}\left[B_{i}\left(S_{i}, X_{i}, S_{i+1}\right)+F_{i+1}\left(S_{i+1}\right)\right]
$$

- Forward regression:

$$
F_{i+1}\left(S_{i+1}\right)=\max _{X_{i}}\left[F_{i}\left(S_{i}\right)+B_{i}\left(S_{i}, X_{i}, S_{i+1}\right)\right]
$$

Problem 1

Consider a reservoir with a net capacity of 30 and inflows equal to 10,50 and 20 , in each of the 3 seasons (4 months) of the year.
Assume that it is desirable to maintain a constant storage volume of 20 and a constant discharge of 35 . The reservoir operation seeks to minimize the squared deviation of these objectives.
Determine the discharge policy for the 3 seasons and the consequent expected evolution of stored volumes, from an initial stored volume of 20.

Problem 1: Solution

Stages: Seasons
State variables: Stored volumes, S_{t} Decision variables: Releases, R_{t} Transfer function: $S_{t+1}=S_{t}+Q_{t}-R_{t}$ Cost function: $C_{t}\left(S_{t}, R_{t}\right)=\left(S_{t}-20\right)^{2}+\left(R_{t}-35\right)^{2}$
Optimum value function: $F\left(S_{t}\right)=\min \left(C_{t}\left(S_{t}, R_{t}\right)+F_{t+1}\left(S_{t+1}\right)\right)$

7

Problem 2

Consider a reservoir with a net capacity of $300 \mathrm{hm}^{3}$ and inflows equal to $100,400,300$ and $0 \mathrm{hm}^{3}$, in each of the 4 seasons (3 months) of the year. The reservoir is equipped with a power plant and the head of the power plant is a function of the stored volume:
$h=0.05 \mathrm{~V}$.
Determine the discharge policy for the 4 seasons that maximizes the annual power production when the stored volume at beginning and end of the year is $200 \mathrm{hm}^{3}$.

Problem 2: Solution

Stages: Seasons
State variables: Stored volumes, S_{t}
Decision variables: Releases, R_{t}
Transfer function: $S_{t+1}=S_{t}+Q_{t}-R_{t}$
Cost function: $B_{t}\left(S_{t}, R_{t}\right)=0.05 S_{t} R_{t}$
Optimum value function: $F\left(S_{t}\right)=\max \left(B_{t}\left(S_{t}, R_{t}\right)+F_{t+1}\left(S_{t+1}\right)\right)$

SWARM: IST - ULIsboa, February 2022 @Rodrigo Proença de Oliveira, 2022
10/02/2022
9

fi
 TÉCNICO
 LISBOA

Problem 3: Reservoir operation

Consider a reservoir with a maximum storage capacity of $15 \mathrm{hm}^{3}$. At the beginning of a hydrological year, the reservoir stores $6 \mathrm{hm}^{3}$ and is expected to receive $20 \mathrm{hm}^{3}$ in the coming year, distributed according to the values presented in the table. The reservoir must satisfy the urban needs and the ecological flow and attempt to satisfy the irrigation needs in the spring and summer. In addition, the reservoir also needs to ensure a minimum flood protection, by reaching a storage level below $10 \mathrm{hm}^{3}$ at the beginning of the winter season, and to promote recreation, by ensuring a storage level above 13 hm^{3} at the beginning of spring and summer. A failure to meet agriculture needs has a penalty as described in the table. The water volume stored at the end of the year is valued worth the values included in table.
Formulate and solve a dynamic programing problem to determine the best reservoir operation strategy. Clearly state the stages, the decision variables, the state variables, the transfer function and the optimal return function of this problem.

	Fall	Winter	Soring	Summer
Inflow (hm3)	6	10	4	0
Urban needs (hm3)	1	1	1	1
Irrigation needs (hm3)	0	0	4	4
Ecological flow (hm3)	2	2	2	2

Unmet agriculture demand $\left(\mathrm{hm}^{3}\right)$	Penalty $(\mathbf{k} \boldsymbol{)})$	Volume stored in the reservoir at the end of year $\left(\mathrm{hm}^{3}\right)$	Value $(\mathbf{k} \xi)$
0	0	$>=14$	1500
1	200	13	1300
2	600	12	1000
3	1200	11	500
4	2000	$<=10$	0
		$10 / 02 / 2022$	10

Problem 4: Reservoir operation

Consider a reservoir with a capacity of $40 \mathrm{hm}^{3}$, a dead storage of $10 \mathrm{hm}^{3}$ and inflows equal to $15,20,5$ e $0 \mathrm{hm}^{3}$ in each of the 4 seasons of the year. The reservoir serves various purposes and the overall benefits in season t can be estimated by
$B_{t}=2000-\left(V_{t+1}-30\right)^{2}-\left(R_{t}-20\right)^{2}$,
where $\mathrm{V}_{\mathrm{t}+1}$ is the volume stored in the reservoir at the end of each season and R_{t} the volume supplied to consumptive uses.
The volume at the beginning of spring has to be greater than $20 \mathrm{hm}^{3}$ and the volume supplied to consumptive uses in each season cannot be larger than $20 \mathrm{hm}^{3}$. The volume stored at the beginning of the year is $10 \mathrm{hm}^{3}$.
There are benefits associated with volume stored at the end of the year, resulting from the value of stored water to meet future use. These are 6500, 6000, 4000 and 1000, respectively for a stored volume equal to 40, 30, 20 and 10 $h m^{3}$.
The reservoir operation optimization problem can be solved by dynamic programming and the diagram shows the beginning of the solution. Indicate which are the decision variables, the state variables, the transfer function and the optimal return function of this problem. Complete the resolution of the problem by regressive dynamic programming and determine the solution that maximizes the benefits of long-term operation.
Explain how the procedure compares the immediate benefits in each season with the long-term benefits obtained in the following seasons. Provide a concrete example, based on the options available for the winter, when the volume stored at the beginning of the season is $20 \mathrm{hm}^{3}$.

Problem 4: Partial solution

From this graph, we must now apply the optimum value function and identify the optimal solution.

Problem 5

Consider a reservoir with a maximum storage capacity of $15 \mathrm{hm}^{3}$. At the beginning of a hydrological year, the reservoir stores $6 \mathrm{hm}^{3}$ and is expected to receive $20 \mathrm{hm}^{3}$ in the coming year, distributed according to the values presented in the table. The reservoir must satisfy the urban needs and the ecological flow and attempt to satisfy the irrigation needs in the spring and summer. In addition, the reservoir also needs to ensure a minimum flood protection, by reaching a storage level below $10 \mathrm{hm}^{3}$ at the beginning of the winter season, and to promote recreation, by ensuring a storage level above $13 \mathrm{hm}^{3}$ at the beginning of spring and summer. A failure to meet agriculture needs has a penalty as described in the table. The water volume stored at the end of the year is valued worth the values included in table.
Formulate and solve a dynamic programing problem to determine the best reservoir operation strategy. Clearly state the stages, the decision variables, the state variables, the transfer function and the optimal return function of this problem.

	Fall	Winter	Spring	Summer
Inflow (hm3)	6	10	4	0
Urban needs (hm3)	1	1	1	1
Irrigation needs (hm3)	0	0	4	4
Ecological flow (hm3)	2	2	2	2

Pump-storage system
 (2D dynamic programming)

Stages, t : half months or half seasons

Decision variables: $R_{1 t}, R_{2 t}$ (and $R_{1 t}$ may be negative)
State variables: $\mathrm{S}_{1 \mathrm{t}}, \mathrm{S}_{2 t}$
Transfer functions: $S_{1, t+1}=S_{1, t}+Q_{1, t}-R_{1, t}$
$S_{2, t+1}=S_{2, t}+R_{1, t}-R_{2, t}$
Benefit function (a, b - price of energy during the day or night)
$C=a \times S_{1, t} \times R_{1, t}$ if $R_{1, t}>0$ (energy is produced and sold)
$C=-b \times S_{1, t} \times R_{1, t}$ if $R_{1, t}<0$ (energy is bought and used for pumping)

For a larger number of reservoirs, there is the risk of the curse of dimensionality

Problem 6: Aquifer management

Consider three pumping wells that are used to satisfy the water needs of a region, estimated as $600 \mathrm{~m}^{3} /$ day. Pumping wells A, B and C can provide up to $400 \mathrm{~m}^{3} / \mathrm{day}, 100$ $\mathrm{m}^{3} /$ day and $200 \mathrm{~m}^{3} /$ day, respectively. The pumping costs are shown in table. Formulate and solve a dynamic programing problem to determine the best aquifer operation strategy, clearly stating the stages, the decision variables, the state variables, the transfer function and the optimal return function of this problem.

Withdrawal $\left(\mathbf{m}^{3} /\right.$ day $)$	Total Cost (k $\boldsymbol{\text { A }} /$ day)		
$\mathbf{0}$	0.10	0.15	0.05
100	0.20	0.30	0.10
200	0.40	-	0.25
300	0.65	-	-
400	0.75	-	-

Stages: Wells, i
Decision variables: Withdrawals from each well, W_{i}
State variables: Cumulative withdrawals up to stage i, T_{i}
Transfer function: $T_{i+1}=T_{i}+W_{i}$
Cost function: Cost $_{i}=C_{i}\left(W_{i}\right)$ see table
Optimum value function: $\mathrm{F}_{\mathrm{i}+1}\left(\mathrm{~T}_{\mathrm{i}+1}\right)=\min \left(\mathrm{C}_{\mathrm{i}}\left(\mathrm{W}_{\mathrm{i}}\right)+\mathrm{F}_{\mathrm{t}}\left(\mathrm{T}_{\mathrm{i}}\right)\right)$

Problem 6: Solution

Withdrawal $\left(\mathrm{m}^{3} /\right.$ day $)$	Total Cost ($\mathbf{k} \boldsymbol{\varepsilon} /$ day $)$		
	A	B	C
100	0.10	0.15	0.05
200	0.40	0.30	0.10
300	0.65	-	0.25
400	0.75	-	-

From this graph, we must now apply the cost function, optimum value function and identify the optimal solution. It is easier to solve moving forward.

Optimal solution:
$\mathrm{W}_{1}=400 \mathrm{~m}^{3} /$ day $; \mathrm{W}_{2}=0 \mathrm{~m}^{3} /$ day; $\mathrm{W}_{3}=200 \mathrm{~m}^{3} /$ day
Or
$\mathrm{W}_{1}=400 \mathrm{~m}^{3} /$ day $; \mathrm{W}_{2}=100 \mathrm{~m}^{3} /$ day $; \mathrm{W}_{3}=100 \mathrm{~m}^{3} /$ day
Total cost: $1.15 \mathrm{k} € /$ day

Problem 7: Aquifer management

An aquifer lies in a region where average seasonal precipitation is as described in the following table. For each 100 mm of precipitation, the aquifer piezometric level rises 0.2 m .

	Fall	Winter	Spring	Summer
Precipitation (mm)	200	300	100	0
Piezometric level rise if no abstraction occur (m)	0,4	0,6	0,2	0,0

The aquifer is used for irrigation and the following table shows the seasonal water demand and the benefits obtained from irrigation, as a function of water supplied. The abstraction of $25 \mathrm{hm}^{3}$ of water from the aquifer leads to a reduction of $0,2 \mathrm{~m}$ of the piezometric level. It is not possible to abstract more water than is needed in a given season. Water abstraction from the aquifer has costs (e.g. pumping costs) which are shown in the following table (in thousands of euros, $k €$).

Water demand (hm)	Fall	$\begin{gathered} \text { Winter } \\ \hline \mathbf{0} \end{gathered}$	Spring	$\begin{gathered} \text { Summer } \\ \hline 100 \\ \hline \end{gathered}$	Aquifer piezometric level (m)	Pumping costs (k€)				
	25		75			Volume abstracted (hm^{3})				
						0	25	50	75	100
Volume supplied to irrigation	Benefits ($\mathbf{~} \boldsymbol{\text {) }}$)				10.0	0	250	400	500	600
0	0	0	0	0	10,2	0	200	350	400	500
25	300	-	200	100	10,4	0	150	300	350	400
50	-	-	600	300	10,6	0	100	200	300	350
75	-	-	800	500	10,8	0	75	150	200	300
100	-	-	-	800	11,0	0	50	100	150	200

Formulate a dynamic programming problem to identify the aquifer operation policy that maximizes net benefits (benefits minus costs) over a hydrologic year, clearly identifying the state-variables, the decision variables, the objective function, the transfer function, the benefits and cost functions, and the optimal return function. At the beginning of the hydrologic year the aquifer piezometric level is at $10,0 \mathrm{~m}$ and the operating policy must ensure that the piezometric returns to $10,0 \mathrm{~m}$ at the end of the hydrologic year.

TÉCNICO
LISBOA

Problem 7: Solution

- Stages: Seasons, t
- State variables: Piezometric level, Z_{t}
- Decision variables: Abstraction in each season, A_{t}
- Transfer function: $Z_{t+1}=Z_{t}+0.2 / 100 \times P_{t}-A_{t} \times 0.2 / 25$
- Benefit function: $B_{t}\left(A_{t}\right)-C\left(Z_{t}, A_{t}\right)$
- Optimum value function: $F_{t}\left(Z_{t}\right)=\max \left(B_{t}\left(A_{t}\right)+F_{t+1}\left(Z_{t+1}\right)\right) \quad$ Fall

Problem 8: Sedimentation

The channel connection to the sea from a small coastal lagoon is subject to a continuous sedimentation that reduces water exchange between the lagoon and the sea with serious consequences to the dependent aquatic ecosystem. Your firm has been hired to plan the dredging of the channel over the next year.
Studies estimate that the sedimentation in four seasons of year is, respectively, $60 \mathrm{~cm}, 100 \mathrm{~cm}$, 40 cm , and 0 cm of sediment. Simultaneously, erosion removes 10% of the amount of accumulated sediment early in each station. Dredging costs can be calculated by

$$
C_{t}=c_{t} \cdot D_{t} / S_{t} \text { (thousands euros) } \quad c_{t}=8,12,4,4 \text { for } t=1,2,3,4
$$

D_{t} is the amount dredged in cm and St is the cumulative amount of sediment in cm . It is not possible to dredge more than 60 cm per season. The goal is to restrict the accumulation of sediment in every season at less than 80 cm and to set the accumulation at the end of the year equal to the beginning of the year.
Formulate a dynamic programming problem that helps in the dredging plan. Clearly indicate i) the state variables, ii) the decision variables; iii) the transfer functions iv) the objective function and the cost functions v) the optimal return function, vi) and the optimal solution found. Discretize its state variables at intervals of 20 cm .

Problem 9 - Capacity expansion

Consider an infrastructure which is requiring an increase of its capacity to deal with increasing demand. The capacity increase costs are indicated in the figure. What should be the policy for expanding the capacity of the infrastructure?

